

Optimizing Fab Operations Using Simulation & Al Algorithms

Benjamin Kovács, Pierre Tassel

PhD Candidates, University of Klagenfurt

PySCFabSim

An open-source semiconductor fab simulator. Developed to accelerate research & development of Al-based dispatching & planning algorithms in the semiconductor industry.

Integration with New Algorithms

The tool provides a Python interface to integrate & test new control strategies with the simulator.

A gym-like interface for RL is also available.

Advanced Semiconductor Manufacturing Conference

Extensions for the Simulator

To minimize the memory & computation footprint of our tool, all non-essential functionality is implemented modularly, in plugins.

The simulator can be extended using the provided Python interface. Developers can develop own plugins to collect data to support decision making, or logging performance.

One can also alter the fab's behavior, alter the production flow, or implement alternative handling of simulated errors.

Graphical User Interface

We developed multiple plugins for configuring simulation parameters

- Dispatchers optimized with genetic programming
- Attention-based RL-agent, trained with the combination of deep reinforcement learning and self-supervised learning

State Representation

Machine Learning-based Agents

- Predictive dispatcher using deep learning

▲ The predictive dispatcher

Acknowledgement

This work was partially funded by KWF project 28472, cms electronics GmbH, FunderMax GmbH, Hirsch Armbänder GmbH, incubed IT GmbH, Infineon Technologies Austria AG, Isovolta AG, Kostwein Holding GmbH, and Privatstiftung Kärntner Sparkasse.

References

B. Kovács, P. Tassel, R. Ali, M. El-Kholany, M. Gebser and G. Seidel, "A Customizable Simulator for Artificial Intelligence Research to Schedule Semiconductor Fabs," 2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), Saratoga Springs, NY, USA, 2022, pp. 1-6, doi: 10.1109/ASMC54647.2022.9792520.

B. Kovács, P. Tassel, M. Gebser and G. Seidel, "A Customizable Reinforcement Learning Environment for Semiconductor Fab Simulation," 2022 Winter Simulation *Conference (WSC)*, Singapore, 2022, pp. 2663-2674, doi: 10.1109/WSC57314.2022.10015524.

P. Tassel, B. Kovács, M. Gebser, K. Schekotihin, P. Stöckermann, and G. Seidel, "Semiconductor Fab Scheduling" with Self-Supervised and Reinforcement Learning", arXiv e*prints*, 2023, doi: 10.48550/arXiv.2302.07162.

B. Kovács, P. Tassel and M. Gebser, "Optimizing Dispatching Strategies for Semiconductor Manufacturing Facilities with Genetic Programming," 2023 Genetic and Evolutionary Computation Conference (GECCO), Lisbon, Portugal, 2023, doi: 10.1145/3583131.3590402.

Contact Information

Benjamin.Kovacs@aau.at https://prosysscience.github.io/PySCFabSim-release/

UNIVERSITÄT KLAGENFURT

Pierre.Tassel@aau.at

