
A customizable open-source simulator for
semiconductor fab scheduling research

Advanced Semiconductor Manufacturing Conference 2022

Benjamin Kovács1, Pierre Tassel1, Ramsha Ali1, 
Mohammed El-Kholany1, Martin Gebser1, Georg Seidel2

This work was partially funded by KWF project 28472, cms electronics GmbH, FunderMax GmbH, Hirsch Armbänder GmbH,
incubed IT GmbH, Infineon Technologies Austria AG, Isovolta AG, Kostwein Holding GmbH, and Privatstiftung Kärntner Sparkasse.



Introduction

• Cooperation with industry

University of Klagenfurt Infineon Technologies Austria GmbH

• Infineon Technologies Austria GmbH
• Collaborative project, goals:

– Explore, analyze, develop high-potential methods to improve factory 
throughput, resource utilization and reduce tardiness



Current state-of-art
• Large-scale instances simulated with 

commercial software
• Several research papers use toy 

problems simulated in problem-
specific self-developed environments

Problem
• Difficult to measure scientific 

progress, evaluate & compare 
methods

Motivation

Our simulator
• Scalable: supports toy to large-scale 

instances
• Multiple interfaces: easy to integrate 

and evaluate against concurrent 
methods

– Reinforcement learning (gym) interface
– Priority-based dispatching rules
– General API

• Open source: no licensing or 
confidentiality issues



Dataset selection

Requirements Selected dataset: SMT2020
• Large-scale datasets aiming to model 

real-world fabs
• 4 problem instances

– High volume – low mix
– Low volume – high mix
– Also with development lotsOPEN SOURCE REAL-WORLD 

SCALE
DOCUMENTED, 

IMPLEMENTATION 
VERIFIABLE



Our tool

EVENT-BASED 
SIMULATOR

DEVELOPED IN 
PYTHON

HIGH-
PERFORMANCE

EXTENDABLE OPEN SOURCE



Target application
End-to-end development of novel methods

Build, train, 
evaluate 

prototypes on 
small instances

1
Investigate 

scalability of 
algorithms

2

Evaluate best 
candidates on 

large-scale 
instances

3
Explore transfer 

learning 
opportunities

All in one single tool



Performance

• Simulation SMT2020 datasets 1 and 2 for a two-year period
– 2021 Notebook CPU: Python 3.9 Interpreter (+ experiment tracking): 

about 30 minutes
– 2021 Notebook CPU: PyPy3 Interpreter: about 18 minutes

• 2 year-period
– 40 000 lots completed
– About 10 million working steps simulated, dispatching decisions executed



Experimental results

Compared to the dataset's reference results
• Similar throughput
• Higher timeliness for hot lots
• Lower timeliness for normal lots
• Slightly lower utilization, same availability

Reasons for slight differences
• Parametrization of dispatching strategies
• Undocumented features -> different 

implementation



Integration & extensions



General interface

Python-interface for integration with arbitrary methods.
Usage
1. Create simulator instance with desired parameters & dataset
2. Set decision point

1. Machine available
2. Lot available
3. Time-based

3. Get available lot, machines and their properties
4. Dispatch lot(s) on machine(s)



Gym interface for RL development

• Easy-to-use interface with 
declarative environment definition
– Select action type
– Build observation space

• from a list of features
• implement own features with plugins

– Result: gym environment
– Train / evaluate existing agents on the 

environment



Plugins

• Custom functionality can be 
implemented using plugins
– New cost function
– Experiment tracking
– Monitoring agent behavior
– Data collection
– Modifying simulator state

Usage
1. Implement (methods of) 

IPlugin interface in a custom 
class

a. on_lot_done
b. on_sim_init
c. on_sim_done

2. Install plugin when 
constructing simulator 
instance



Chart plugin • Visualize schedules for small-scale instances
• Help understanding the behavior of newly developed agents



Weights & 
Biases Plugin
• Track & analyze 

large-scale 
experiments

• Metrics
• Completed lots
• On-time lots
• Batch utilization
• Machine 

utilization
• Speed



Conclusion

• New tool to support development, evaluation and comparison of 
semiconductor fab scheduling methods

• Open source, extensible
• Available on GitHub



Thank you for your attention.


