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Introduction

• Cooperation with industry

University of Klagenfurt Infineon Technologies Austria GmbH

• Infineon Technologies Austria GmbH
• Collaborative project, goals:

– Explore, analyze, develop high-potential methods to improve factory 
throughput, resource utilization and reduce tardiness



Current state-of-art
• Large-scale instances simulated with 

commercial software
• Several research papers use toy 

problems simulated in problem-
specific self-developed environments

Problem
• Difficult to measure scientific 

progress, evaluate & compare 
methods

Motivation

Our simulator
• Scalable: supports toy to large-scale 

instances
• Multiple interfaces: easy to integrate 

and evaluate against concurrent 
methods

– Reinforcement learning (gym) interface
– Priority-based dispatching rules
– General API

• Open source: no licensing or 
confidentiality issues



Dataset selection

Requirements Selected dataset: SMT2020
• Large-scale datasets aiming to model 

real-world fabs
• 4 problem instances

– High volume – low mix
– Low volume – high mix
– Also with development lotsOPEN SOURCE REAL-WORLD 

SCALE
DOCUMENTED, 

IMPLEMENTATION 
VERIFIABLE



Our tool

EVENT-BASED 
SIMULATOR

DEVELOPED IN 
PYTHON

HIGH-
PERFORMANCE

EXTENDABLE OPEN SOURCE



Target application
End-to-end development of novel methods

Build, train, 
evaluate 

prototypes on 
small instances

1
Investigate 

scalability of 
algorithms

2

Evaluate best 
candidates on 

large-scale 
instances

3
Explore transfer 

learning 
opportunities

All in one single tool



Performance

• Simulation SMT2020 datasets 1 and 2 for a two-year period
– 2021 Notebook CPU: Python 3.9 Interpreter (+ experiment tracking): 

about 30 minutes
– 2021 Notebook CPU: PyPy3 Interpreter: about 18 minutes

• 2 year-period
– 40 000 lots completed
– About 10 million working steps simulated, dispatching decisions executed



Experimental results

Compared to the dataset's reference results
• Similar throughput
• Higher timeliness for hot lots
• Lower timeliness for normal lots
• Slightly lower utilization, same availability

Reasons for slight differences
• Parametrization of dispatching strategies
• Undocumented features -> different 

implementation



Integration & extensions



General interface

Python-interface for integration with arbitrary methods.
Usage
1. Create simulator instance with desired parameters & dataset
2. Set decision point

1. Machine available
2. Lot available
3. Time-based

3. Get available lot, machines and their properties
4. Dispatch lot(s) on machine(s)



Gym interface for RL development

• Easy-to-use interface with 
declarative environment definition
– Select action type
– Build observation space

• from a list of features
• implement own features with plugins

– Result: gym environment
– Train / evaluate existing agents on the 

environment



Plugins

• Custom functionality can be 
implemented using plugins
– New cost function
– Experiment tracking
– Monitoring agent behavior
– Data collection
– Modifying simulator state

Usage
1. Implement (methods of) 

IPlugin interface in a custom 
class

a. on_lot_done
b. on_sim_init
c. on_sim_done

2. Install plugin when 
constructing simulator 
instance



Chart plugin • Visualize schedules for small-scale instances
• Help understanding the behavior of newly developed agents



Weights & 
Biases Plugin
• Track & analyze 

large-scale 
experiments

• Metrics
• Completed lots
• On-time lots
• Batch utilization
• Machine 

utilization
• Speed



Conclusion

• New tool to support development, evaluation and comparison of 
semiconductor fab scheduling methods

• Open source, extensible
• Available on GitHub



Thank you for your attention.


