A CUSTOMIZABLE REINFORCEMENT LEARNING ENVIRONMENT
FOR SEMICONDUCTOR FAB SIMULATION

BENJAMIN KOVvAcs, PIERRE TASSEL, MARTIN GEBSER, GEORG SEIDEL

CONTENTS

. Introduction

. Background

ll' UNIVERSITAT
KLAGENFURT
. The Simulator 3

Infineon

. The Reinforcement Learning (RL)
Framework

. Integration with RL Algorithms

This work if a result of a collaborative project between the
University of Klagenfurt and Infineon Technologies Austria.

. Conclusion

INTRODUCTION

¢ (Goal: optimise operations of semiconductor fabs

Dispatching Simulation
Rules created by field * Fast, cost effective
experts * Helps to

Optimal scaling properties * analyse effects of

No information about * factory upgrades

solution quality * policy changes

e breakdowns
e critical decisions

* compare methods

Planning
Modelling eftort by field

experts
Optimal solution
Scaling issues for large-

scale instances

BACKGROUND

% Open datasets available (e.g. SMT2020®)
¢ Simulations in industry: commercial software

» Research: small-scale (t0y) problem with custom simulators o7 commercial software

reproducibility not possible with closed- no customisation opportunities for
source software licenses, versions commercial tools — involvement of
developers required

difficulties in comparing novel methodes,
measuring scientific progress arbitrary reference implementations

(Goal of our research project
Develop a universal simulator for fab scheduling research
from prototyping to large-scale simulations for various
dispatching and scheduling strategies.

Current paper
Introduction of our Reinforcement Learning Framework.

=k L}J
u

101

THE SM 12020 DATASET

¢ Scale of datasets

¢ 4 1Instances ¢ 107 machine families
¢ high volume — low mix ¢ I 300 + machines
% low volume — high mix % 40 000 lots (for 2-year
¢ + extensions with period)
development lots ¢ 4 to 10 products

¢ 300 to 600 steps / product

THE SIMULATOR

PySCFabSim®: open-source, scalable, customisable simulator in Python

https://github.com/prosysscience/PySCFabSim-release

open-source reproducible

custom 1ntegrations

full data access verified

pre-defined interfaces

multiple datasets

scalable super fast

https://github.com/prosysscience/PySCFabSim-release

VALIDATION & PERFORMANCE

¢ Validation
¢ Comparison to SM'T2020 dataset reference results
¢ Performance
¢ example: 2 years of operation
¢ 40 000 lots, average 500 steps / lot => 10 000 000 operations
¢ simulated in 20 minutes

¢ usable for machine learning methods with high sample complexity;
parallelisation requirements

@ 4 seconds of startup time, 100-200 MB of memory usage / thread

MACHINE LEARNING FOR DISPATCHING

¢ Dispatching strategies

¢ involves human expertise
(engineering, experience)

¢ optimality unknown

¢ no automatic adaption to
changing circumstances

¢ Dispatching with ML

¢ higher upfront cross
(engineering, training)

¢ larger policy space

¢ automatic adaption of policy
to process changes

THE RL FRAMEWORK

¢ (Why) Reinforcement Learning

¢ learn from problem structure,
instance characteristics

¢ offline: pre-collected samples
¢ online: live system
¢ transfer: simulations

¢ real-time dispatching

¢ QOur RL toolbox

A
L) 4
v

o
L (04
v

A
L (X) 4
v

o
L 04
v

Customisable gym interface for
the introduced simulator

¢ Action

¢ (Observation space

¢ Reward

,7Plug-and-play” environment

Single- and multi-agent
configuration options

Partially observable

OPERATION MODES: SINGLE

RO

@

RL agent

Full RL

control

=

Simulation

Single RL agent controls all workstations.

Simulation

RL agent

~~~
-y
y
Ly
‘u’

Single RL agent controls
selected workstation.

Greedy
dispatcher

=

Simulation

.fi?‘

Full RL

control

RL agent 3 RL agent 2

Multiple agents control all workstations.

==

=

Simulation

A

A
Greedy

dispatcher

Reference solution by greedy.

Partial RL
control

Heuristic
control

. 1 TN | —t | . ) JIN | —t AT . ) SN | —— . ) SN | —— | . ] TN | —— | . ] TN | —t | . ) TIN ( — N . ) TIN | —m— | s ] IIN | — | . ) AN




ARCHITECTURE OF THE RL-FRAMEWORK

=
S
—~
o0
®
—
oF
=
=

Sim RL framework: Simulator

P

=

(8

4

o

. Simulate events

. Select agent (RL / heuristic)

. Execute selection

Agent selector

Simulator |p--------- Machine(s) ______ based on

Instantiate simulation Waltlng lots workstation
State info

Create RL environment

Start simulation

Lots to dispatch RL Agent with wrapper

.n----------------;---------v--------

1. GGenerate observation, rewarc e
2. Pick Action e
3. Map action to lot or machine

Stop at decision point Observation,

reward generator

Observation, reward

ExEEEnEm

Find lot or machine based on agent

-Dlspatchmg:

Machi
Sene . Machine RL agent

selector

heuristic -
»

4 I I EE EEEEEEEEEEEEEEEEEEEEEEEEEEEEEERDB |

AL AN EEEEEEEEENEEEEEEERP

-



ACTION SPACES

¢ 2 decision points

¢ lot available => assign to machine

. . Actions
¢ machine available => find lot

Pick operation for available machine'
Assign lot to machine’s queue’

Pick lot from for available machine’
Select heuristic for available machine®

¢ 4 available action spaces
¢ direct lot / machine selection
¢ queue creation

¢ heuristic selection




OBSERVATION SPACE

Construct observation

space from pre-defined |
Observation space components

features T ke — aobal
1234 i No of WIP lots!?3

Operation type / Lot
Available lot count for op.?*
Maximum batch size?3
Batch utilization?4

' Steps remaining after op.

Next maintenance

- Average utilization'?*
|

' No of lot types / routes!?*

. Lot timeliness?34

i Setup/processing ratio'#*

¢ single / multi features Ldle/utilized ratio!® 5
i Class (batch/cascade/...)!* | i
' Lot idle time!?34 |

1234

. 1 : d ' Cost of current setup'#* i |
¢ some limited to . Bottleneck factor!? | i Lot priority+234

' Processing timel?34
| . .
. Fit before maintenancei?3
|
' Setup time!**
|

i Queue length?

- Machine family size!**

i Count of possible setups!#*
- Time of setups!?34

specific action space

. Rel. machine performance!**

Define own features

Count of op. types™* ' Remaining coupling time!*34

I
I
| - — — Y o T

based on custom data
collection (plugins)

{



REWARD FUNCTION

¢ Define scalar function using pre-

defined reward components Reward components
. Dense i Sparse
# Sparse and dense functions Timeliness of lots " Lot completion
No of WIP lots i Coupling violation
¢ Add custom components based on Utilization :

data collection plugins




SUMMARY: OBSERVATION & ACTION SPACES, REWARD

Actions Reward components
Pick operation for available machine! Dense i Sparse
Assign lot to machine’s queue? Timeliness of lots - Lot completion
Pick lot from for available machine’ No of WIP lots E Coupling violation
Select heuristic for available machine* Utilization |

Observation space components

—————————————————————————————————————————————————

i Machine Global

1234 o of WIP lots!?3*

verage utilization
o of lot types / routes!?*

- Lot timelinesst

Operation type / Lot

Available lot count for op.+**

1234

|
|
|
|
|
- Next maintenance - Maximum batch size***
|
|
|
|
|

1234 1234

: Setup/processing ratio Batch utilization?3

' Idle/utilized ratio'z
. Class (batch/cascade/...)*

1234

Z > Z

Steps remaining after op.1%%

1234

' Cost of current setup'2
' Bottleneck factor!?*

i Queue length?
- Machine family size
i Count of possible setups

- Time of setups!?34

|
| 1234

. Lot priority+
i Processing timet?34
' Fit before maintenancel?3
i Setup time-

. Rel. machine performancel**
|

1234

1234 1234

" Lot idle timel?*34 |

' Count of op. types'** ' Remaining coupling time*3

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —— — — ——— —— e— — @ — @ o—— @ a— a—l a— l a—— l a—— l a— l e—




©CoOoO~NOOTA~,WNPE

from
from
from
from
from
from

R =
02 =
P =

INSTANTIATION OF ENVIRONMENTS

rl.env.action_choose_rule_for_machine import ChooseRuleForMachine
rl.env.actions import SingleObservationFeature

rl.env.agent import RLAgent, GreedyAgent

rl.env.environment import DynamicSCFabSimEnv

rl.env.reward import Reward

simulation.plugins.wandb_plugin import WandBPlugin

Reward
ChooseRuleForMachine.Observation

GreedyAgent.Policy
DEMO_

ENV_2 = lambda max_steps=100000000, max_days=730: DynamicSCFabSimEnv(
action=ChooseRuleForMachine(

alternatives=[P.CriticalRatio, P.FIFODeadline, P.FIFOwaiting, P.AvoidSetup, P.HotLotFirst, P.CombinedFIFO, ],

observation_space=[02.Machine.cascading, 02.Machine.bottleneck_factor, 02.Machine.setup_last_at,

02.Machine.setup_last_cost, 02.Machine.idle_processing_ratio, 02.Machine.next_maintenance,

SingleObservationFeature(lambda instance, **kwargs: len(instance.done_lots), True), 1, ),
agents=|[

RLAgent (1dx=0, machine_groups=['Diffusion']), RLAgent(idx=1, machine_families=['DefMet_BE_33', 'DefMet_BE_42']),

GreedyAgent(policy=GreedyAgent.Policy.CombinedCR),

1,
simulator_params=dict(plugins=[WandBPlugin()], run_to=3600 * 24 * max_days, ), dataset='SMT2020_LVHM',

reward=5 * R.Dense.LotWipCount() + R.Dense.LotTimeliness() + 20 * R.Sparse.LotCompletion(), max_steps=max_steps,

)




FUTURE WORK

¢ Development of optimised RL agents for the environment
@ Analyse adaptivity of agents to evolving factories

¢ Integration of datasets with physical fabs, transfer learning from
current dataset to industrial ones




TIME FOR QUESTIONS




THANK YOU FOR
YOUR ATTENTION

Download PySCFabSim at
https://github.com/prosysscience/PySCFabSim-release

Contact

Benjamin Kovacs
University of Klagenfurt

This work was partially funded by KWF project 28472, cms electronics GmbH, FunderMax GmbH, Hirsch Armbinder GmbH, Ben,] dINIT. KOV&CS@&au' at
incubed I'T GmbH, Infineon Technologies Austria AG, Isovolta AG, Kostwein Holding GmbH, and Privatstiftung Kirntner Sparkasse.



mailto:Benjamin.Kovacs@aau.at
https://github.com/prosysscience/PySCFabSim-release

REFERENCES

(1) D. Kopp, M. Hassoun, A. Kalir and L. Monch, "SMT2020—A
Semiconductor Manutacturing Testbed," in IEEE Transactions on

Semiconductor Manufacturing, vol. 33, no. 4, pp. §22-531, Nov. 2020, doi:
10.1109/TSM.2020.3001933.

(2) B. Kovacs, P. Tassel, R. Ali, M. El-Kholany, M. Gebser and G. Seidel, "A

Customizable Simulator for Artificial Intelligence Research to Schedule
Semiconductor Fabs," 2022 33rd Annual SEMI Advanced Semiconductor
Manufacturing Conference (ASMC), 2022, pp. 1-6, doi: 10.1109/
ASMC54647.2022.9792520.




