A CUSTOMIZABLE REINFORCEMENT LEARNING ENVIRONMENT FOR SEMICONDUCTOR FAB SIMULATION

SINGAPORE, DECEMBER 11-14 2022.

BENJAMIN KOVÁCS, PIERRE TASSEL, MARTIN GEBSER, GEORG SEIDEL

- I. Introduction
- 2. Background
- 3. The Simulator
- 4. The Reinforcement Learning (RL) Framework
- 5. Integration with RL Algorithms
- 6. Conclusion

CONTENTS

INTRODUCTION

Goal: optimise operations of semiconductor fabs

Dispatching

- Rules created by field
 - experts
- Optimal scaling properties
- No information about solution quality

- Fast, cost effective
- Helps to
 - analyse effects of • factory upgrades

 - policy changes
 - breakdowns
 - critical decisions
 - compare methods

Simulation

Planning

- Modelling effort by field
 - experts
- Optimal solution
- Scaling issues for largescale instances

- Open datasets available (e.g. SMT2020^(I))
- Simulations in industry: commercial software

no customisation opportunities for reproducibility not possible with closedcommercial tools — involvement of source software licenses, versions developers required difficulties in comparing novel methods,

arbitrary reference implementations measuring scientific progress

BACKGROUND

Research: small-scale (toy) problem with custom simulators or commercial software

Goal of our research project Develop a universal simulator for fab scheduling research from prototyping to large-scale simulations for various dispatching and scheduling strategies.

Current paper Introduction of our Reinforcement Learning Framework.

4 instances high volume — low mix Iow volume — high mix + extensions with development lots

THE SMT2020 DATASET

- Scale of datasets
 - IO7 machine families
 - I 300 + machines
 - 40 000 lots (for 2-year
 40 lots (for 2-yea period)
 - 4 to 10 products
 - 300 to 600 steps / product

THE SIMULATOR

PySCFabSim⁽²⁾: open-source, scalable, customisable simulator in Python https://github.com/prosysscience/PySCFabSim-release

open-source

pre-defined interfaces

scalable

reentrant flow

breakdowns

- Validation
- Comparison to SMT2020 dataset reference results Performance
 - example: 2 years of operation
 - 40 000 lots, average 500 steps / lot => 10 000 000 operations
 - simulated in 20 minutes
 - usable for machine learning methods with high sample complexity,
 parallelisation requirements
 - 4 seconds of startup time, 100-200 MB of memory usage / thread

MACHINE LEARNING FOR DISPATCHING

Dispatching strategies

involves human expertise
 (engineering, experience)

optimality unknown

 no automatic adaption to changing circumstances

Dispatching with ML

- higher upfront cross
 (engineering, training)
- larger policy space
- automatic adaption of policy
 to process changes

THE RL FRAMEWORK

- (Why) Reinforcement Learning
 learn from problem structure,
 instance characteristics
 - offline: pre-collected samples
 - online: live system
 - transfer: simulations
 - real-time dispatching

Our RL toolbox

- Customisable gym interface for the introduced simulator
 - Action
 - Observation space
 - Reward
- "Plug-and-play" environment
- Single- and multi-agent
 configuration options
- Partially observable

ARCHITECTURE OF THE RL-FRAMEWORK

- I. Create RL environment
- 2. Instantiate simulation
- 3. Start simulation

program

Main

Simul

ork

Sim

- 4. Simulate events
- 5. Stop at decision point
- 6. Select agent (RL / heuristic)
- 7. Find lot or machine based on agent
- 8. Execute selection

Simulator

1. Generate observation, reward 2. Pick Action

Map action to lot or machine

- 2 decision points
 - Iot available => assign to machine
 - machine available => find lot
- 4 available action spaces
 - direct lot / machine selection
 - queue creation
 - heuristic selection

ACTION SPACES

Actions

Pick operation for available machine¹ Assign lot to machine's queue² Pick lot from for available machine³ Select heuristic for available machine⁴

OBSERVATION SPACE

- Construct observation
 space from pre-defined
 features
 - single / multi features
 - some limited to
 specific action space
- Define own features
 based on custom data
 collection (plugins)

Observation space components

Machine Next maintenance¹²³⁴ Setup/processing ratio¹²³⁴ Idle/utilized ratio¹²³⁴ Class (batch/cascade/...)¹²³⁴ Cost of current setup¹²³⁴ Bottleneck factor¹²³⁴ Queue length² Machine family size¹²³⁴ Count of possible setups¹²³⁴ Time of setups¹²³⁴ Count of op. types¹²³⁴ Global No of WIP lots¹²³⁴ Average utilization¹²³⁴ No of lot types / routes¹²³⁴ Operation type / Lot Available lot count for op.¹²³⁴ Maximum batch size¹²³⁴ Batch utilization¹²³⁴ Steps remaining after op.¹²³⁴ Lot timeliness¹²³⁴ Lot timeliness¹²³⁴ Lot idle time¹²³⁴ Lot priority¹²³⁴ Processing time¹²³⁴ Fit before maintenance¹²³⁴ Setup time¹²³⁴ Rel. machine performance¹²³⁴

REWARD FUNCTION

- Define scalar function using predefined reward components
 - Sparse and dense functions
- Add custom components based on data collection plugins

<u>Reward components</u>

Dense Timeliness of lots No of WIP lots Utilization Sparse Lot completion Coupling violation

SUN

MMARY: OBSERV	VATION &	x ACTIO	N SP	ACES, REWA	ARI
Actions		<u>Reward components</u>			
Pick operation for available machine ¹ Assign lot to machine's queue ² Pick lot from for available machine ³ Select heuristic for available machine ⁴		Dense Timeliness of lots No of WIP lots Utilization		Sparse Lot completion Coupling violation	
Observation space components			Operation type / Lot		
Machine	Global		Available lot count for $op.^{1234}$		
Next maintenance ¹²³⁴	No of WIP $lots^{1234}$		Maximum batch size ^{1234}		
Setup/processing ratio ¹²³⁴	Average utilization ¹²³⁴		Batch utilization ^{1234}		
$Idle/utilized ratio^{1234}$	No of lot types / routes ¹²³⁴		Steps remaining after op. $\frac{1234}{2}$		
Class (batch/cascade/) ¹²³⁴			Lot timeliness ¹²³⁴		
Cost of current setup ^{1$\underline{2}34$}			Lot idle time 1234		
Bottleneck factor ¹²³⁴			Lot priority ^{1234}		
$Queue length^2$			Processing time ^{1234}		
Machine family size ¹²³⁴			Fit befor	re maintenance ¹²³⁴	
Count of possible setups ¹²³⁴			Setup ti	me^{1234}	
Time of setups ¹²³⁴			Rel. mac	chine performance 1234	
Count of op. types ¹²³⁴			Remaini	ng coupling time ¹²³⁴	


```
from rl.env.action_choose_rule_for_machine import ChooseRuleForMachine
1
2
     from rl.env.actions import SingleObservationFeature
3
     from rl.env.agent import RLAgent, GreedyAgent
     from rl.env.environment import DynamicSCFabSimEnv
4
     from rl.env.reward import Reward
5
     from simulation.plugins.wandb_plugin import WandBPlugin
6
     R = Reward
8
     02 = ChooseRuleForMachine.Observation
9
10
     P = GreedyAgent.Policy
     DEMO_ENV_2 = lambda max_steps=1000000000, max_days=730: DynamicSCFabSimEnv(
11
         action=ChooseRuleForMachine(
12
             alternatives=[P.CriticalRatio, P.FIFODeadline, P.FIFOWaiting, P.AvoidSetup, P.HotLotFirst, P.CombinedFIFO, ],
13
             observation_space=[02.Machine.cascading, 02.Machine.bottleneck_factor, 02.Machine.setup_last_at,
14
                                02.Machine.setup_last_cost, 02.Machine.idle_processing_ratio, 02.Machine.next_maintenance,
15
                                SingleObservationFeature(lambda instance, **kwargs: len(instance.done_lots), True), ], ),
16
17
         agents=[
             RLAgent(idx=0, machine_groups=['Diffusion']), RLAgent(idx=1, machine_families=['DefMet_BE_33', 'DefMet_BE_42']),
18
             GreedyAgent(policy=GreedyAgent.Policy.CombinedCR),
19
20
         simulator_params=dict(plugins=[WandBPlugin()], run_to=3600 * 24 * max_days, ), dataset='SMT2020_LVHM',
21
22
         reward=5 * R.Dense.LotWipCount() + R.Dense.LotTimeliness() + 20 * R.Sparse.LotCompletion(), max_steps=max_steps, )
23
```

INSTANTIATION OF ENVIRONMENTS

FUTURE WORK

Development of optimised RL agents for the environment

Analyse adaptivity of agents to evolving factories

current dataset to industrial ones

- Integration of datasets with physical fabs, transfer learning from

罪

THANK YOU FOR YOUR ATTENTION

Download PySCFabSim at https://github.com/prosysscience/PySCFabSim-release

This work was partially funded by KWF project 28472, cms electronics GmbH, FunderMax GmbH, Hirsch Armbänder GmbH, incubed IT GmbH, Infineon Technologies Austria AG, Isovolta AG, Kostwein Holding GmbH, and Privatstiftung Kärntner Sparkasse.

Contact Benjamin Kovács

University of Klagenfurt Benjamin.Kovacs@aau.at

REFERENCES

 (1) D. Kopp, M. Hassoun, A. Kalir and L. Mönch, "SMT2020—A Semiconductor Manufacturing Testbed," in *IEEE Transactions on Semiconductor Manufacturing*, vol. 33, no. 4, pp. 522-531, Nov. 2020, doi: 10.1109/TSM.2020.3001933.

(2) B. Kovács, P. Tassel, R. Ali, M. El-Kholany, M. Gebser and G. Seidel, "A Customizable Simulator for Artificial Intelligence Research to Schedule Semiconductor Fabs," *2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)*, 2022, pp. 1-6, doi: 10.1109/ ASMC54647.2022.9792520.

