
A CUSTOMIZABLE REINFORCEMENT LEARNING ENVIRONMENT
FOR SEMICONDUCTOR FAB SIMULATION

Benjamin Kovács, Pierre Tassel, Martin Gebser, Georg Seidel

SINGAPORE, DECEMBER 11-14 2022.

CONTENTS

1. Introduction

2. Background

3. The Simulator

4. The Reinforcement Learning (RL)
Framework

5. Integration with RL Algorithms

6. Conclusion

➕

This work if a result of a collaborative project between the
University of Klagenfurt and Infineon Technologies Austria.

INTRODUCTION

Goal: optimise operations of semiconductor fabs

Dispatching
• Rules created by field

experts
• Optimal scaling properties
• No information about

solution quality

Planning
• Modelling effort by field

experts
• Optimal solution
• Scaling issues for large-

scale instances

Simulation
• Fast, cost effective
• Helps to

• analyse effects of
• factory upgrades
• policy changes
• breakdowns
• critical decisions

• compare methods

BACKGROUND

Open datasets available (e.g. SMT2020(1))

Simulations in industry: commercial software

Research: small-scale (toy) problem with custom simulators or commercial software

difficulties in comparing novel methods,
measuring scientific progress arbitrary reference implementations

reproducibility not possible with closed-
source software licenses, versions

no customisation opportunities for
commercial tools — involvement of

developers required

Goal of our research project
Develop a universal simulator for fab scheduling research
from prototyping to large-scale simulations for various

dispatching and scheduling strategies.

Current paper
Introduction of our Reinforcement Learning Framework.

THE SMT2020 DATASET

4 instances
high volume — low mix
low volume — high mix
+ extensions with
development lots 

Scale of datasets
107 machine families
1 300 + machines
40 000 lots (for 2-year
period)
4 to 10 products
300 to 600 steps / product

THE SIMULATOR

PySCFabSim(2): open-source, scalable, customisable simulator in Python 
https://github.com/prosysscience/PySCFabSim-release

open-source

scalable

pre-defined interfaces

custom integrations

full data access

reproducible

verified

multiple datasetssuper fast

breakdowns

reentrant flow batch machines cascade machines

sequence-dependent setupsdedications

https://github.com/prosysscience/PySCFabSim-release

VALIDATION & PERFORMANCE

Validation

Comparison to SMT2020 dataset reference results ✅

Performance

example: 2 years of operation

40 000 lots, average 500 steps / lot => 10 000 000 operations

simulated in 20 minutes

usable for machine learning methods with high sample complexity,
parallelisation requirements

4 seconds of startup time, 100-200 MB of memory usage / thread

MACHINE LEARNING FOR DISPATCHING

Dispatching strategies

involves human expertise
(engineering, experience)

optimality unknown

no automatic adaption to
changing circumstances

Dispatching with ML

higher upfront cross
(engineering, training)

larger policy space

automatic adaption of policy
to process changes

THE RL FRAMEWORK

(Why) Reinforcement Learning
learn from problem structure,
instance characteristics

offline: pre-collected samples
online: live system
transfer: simulations

real-time dispatching

Our RL toolbox
Customisable gym interface for
the introduced simulator

Action
Observation space
Reward

„Plug-and-play“ environment
Single- and multi-agent
configuration options
Partially observable

OPERATION MODES: SINGLE- OR MULTI-AGENT

Full RL
control

Partial RL
control

Full RL
control

Heuristic
control

ARCHITECTURE OF THE RL-FRAMEWORK

1. Create RL environment

2. Instantiate simulation

3. Start simulation

4. Simulate events

5. Stop at decision point

6. Select agent (RL / heuristic)

7. Find lot or machine based on agent

8. Execute selection Machine
selector Machine

M
ai

n
pr

og
ra

m

RL Agent with wrapper

Si
m

ul
at

or
R

L
fr

am
ew

or
k

Si
m

1. Generate observation, reward
2. Pick Action
3. Map action to lot or machine

ACTION SPACES

2 decision points

lot available => assign to machine

machine available => find lot

4 available action spaces

direct lot / machine selection

queue creation

heuristic selection

OBSERVATION SPACE

Construct observation
space from pre-defined
features

single / multi features

some limited to
specific action space

Define own features
based on custom data
collection (plugins)

REWARD FUNCTION

Define scalar function using pre-
defined reward components

Sparse and dense functions

Add custom components based on
data collection plugins

SUMMARY: OBSERVATION & ACTION SPACES, REWARD

INSTANTIATION OF ENVIRONMENTS

FUTURE WORK

Development of optimised RL agents for the environment

Analyse adaptivity of agents to evolving factories

Integration of datasets with physical fabs, transfer learning from
current dataset to industrial ones

TIME FOR QUESTIONS

THANK YOU FOR
YOUR ATTENTION

This work was partially funded by KWF project 28472, cms electronics GmbH, FunderMax GmbH, Hirsch Armbänder GmbH,
incubed IT GmbH, Infineon Technologies Austria AG, Isovolta AG, Kostwein Holding GmbH, and Privatstiftung Kärntner Sparkasse.

Contact

Benjamin Kovács

University of Klagenfurt

Benjamin.Kovacs@aau.at

Download PySCFabSim at

https://github.com/prosysscience/PySCFabSim-release

mailto:Benjamin.Kovacs@aau.at
https://github.com/prosysscience/PySCFabSim-release

REFERENCES

(1) D. Kopp, M. Hassoun, A. Kalir and L. Mönch, "SMT2020—A
Semiconductor Manufacturing Testbed," in IEEE Transactions on
Semiconductor Manufacturing, vol. 33, no. 4, pp. 522-531, Nov. 2020, doi:
10.1109/TSM.2020.3001933.

(2) B. Kovács, P. Tassel, R. Ali, M. El-Kholany, M. Gebser and G. Seidel, "A
Customizable Simulator for Artificial Intelligence Research to Schedule
Semiconductor Fabs," 2022 33rd Annual SEMI Advanced Semiconductor
Manufacturing Conference (ASMC), 2022, pp. 1-6, doi: 10.1109/
ASMC54647.2022.9792520.

