
A CUSTOMIZABLE REINFORCEMENT LEARNING ENVIRONMENT 
FOR SEMICONDUCTOR FAB SIMULATION

Benjamin Kovács, Pierre Tassel, Martin Gebser, Georg Seidel

SINGAPORE, DECEMBER 11-14 2022.



CONTENTS

1. Introduction

2. Background

3. The Simulator

4. The Reinforcement Learning (RL) 
Framework

5. Integration with RL Algorithms

6. Conclusion

➕

This work if a result of a collaborative project between the 
University of Klagenfurt and Infineon Technologies Austria.



INTRODUCTION

Goal: optimise operations of semiconductor fabs

Dispatching
• Rules created by field 

experts
• Optimal scaling properties
• No information about 

solution quality

Planning
• Modelling effort by field 

experts
• Optimal solution
• Scaling issues for large-

scale instances

Simulation
• Fast, cost effective
• Helps to

• analyse effects of
• factory upgrades
• policy changes
• breakdowns
• critical decisions

• compare methods



BACKGROUND

Open datasets available (e.g. SMT2020(1))

Simulations in industry: commercial software

Research: small-scale (toy) problem with custom simulators or commercial software

difficulties in comparing novel methods, 
measuring scientific progress arbitrary reference implementations

reproducibility not possible with closed-
source software licenses, versions

no customisation opportunities for 
commercial tools — involvement of 

developers required



Goal of our research project
Develop a universal simulator for fab scheduling research 
from prototyping to large-scale simulations for various 

dispatching and scheduling strategies.

Current paper
Introduction of our Reinforcement Learning Framework.



THE SMT2020 DATASET

4 instances
high volume — low mix
low volume — high mix
+ extensions with 
development lots 

Scale of datasets
107 machine families
1 300 + machines
40 000 lots (for 2-year 
period)
4 to 10 products
300 to 600 steps / product



THE SIMULATOR

PySCFabSim(2): open-source, scalable, customisable simulator in Python 
https://github.com/prosysscience/PySCFabSim-release

open-source

scalable

pre-defined interfaces

custom integrations

full data access

reproducible

verified

multiple datasetssuper fast

breakdowns

reentrant flow batch machines cascade machines

sequence-dependent setupsdedications

https://github.com/prosysscience/PySCFabSim-release


VALIDATION & PERFORMANCE

Validation

Comparison to SMT2020 dataset reference results ✅

Performance

example: 2 years of operation

40 000 lots, average 500 steps / lot => 10 000 000 operations

simulated in 20 minutes

usable for machine learning  methods with high sample complexity, 
parallelisation requirements

4 seconds of startup time, 100-200 MB of memory usage / thread



MACHINE LEARNING FOR DISPATCHING

Dispatching strategies

involves human expertise 
(engineering, experience)

optimality unknown

no automatic adaption to 
changing circumstances

Dispatching with ML

higher upfront cross 
(engineering, training)

larger policy space

automatic adaption of policy 
to process changes



THE RL FRAMEWORK

(Why) Reinforcement Learning
learn from problem structure, 
instance characteristics

offline: pre-collected samples
online: live system
transfer: simulations

real-time dispatching

Our RL toolbox
Customisable gym interface for 
the introduced simulator

Action
Observation space
Reward

„Plug-and-play“ environment
Single- and multi-agent 
configuration options
Partially observable



OPERATION MODES: SINGLE- OR MULTI-AGENT

Full RL 
control

Partial RL 
control

Full RL 
control

Heuristic 
control



ARCHITECTURE OF THE RL-FRAMEWORK

1. Create RL environment

2. Instantiate simulation

3. Start simulation

4. Simulate events

5. Stop at decision point

6. Select agent (RL / heuristic)

7. Find lot or machine based on agent

8. Execute selection Machine 
selector Machine
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1. Generate observation, reward
2. Pick Action
3. Map action to lot or machine



ACTION SPACES

2 decision points

lot available => assign to machine

machine available => find lot

4 available action spaces

direct lot / machine selection

queue creation

heuristic selection



OBSERVATION SPACE

Construct observation 
space from pre-defined 
features

single / multi features

some limited to 
specific action space

Define own features 
based on custom data 
collection (plugins)



REWARD FUNCTION

Define scalar function using pre-
defined reward components

Sparse and dense functions

Add custom components based on 
data collection plugins



SUMMARY: OBSERVATION & ACTION SPACES, REWARD



INSTANTIATION OF ENVIRONMENTS



FUTURE WORK

Development of optimised RL agents for the environment

Analyse adaptivity of agents to evolving factories

Integration of datasets with physical fabs, transfer learning from 
current dataset to industrial ones



TIME FOR QUESTIONS
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